Independent component analysis based on symmetrised scatter matrices
نویسندگان
چکیده
منابع مشابه
Independent component analysis based on symmetrised scatter matrices
A new method for separating the mixtures of independent sources has been proposed recently in [8]. This method is based on two scatter matrices with the so called independence property. The corresponding method is now further examined. Simple simulation studies are used to compare the performance of so called symmetrised scatter matrices in solving the independence component analysis problem. T...
متن کاملRobust Independent Component Analysis Based on Two Scatter Matrices
Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed that, under general assumptions, any two scatter matrices with the so called independent components property can be used to estimate the unmixing matrix for the independent component analysis (ICA). The method is a generalization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular covariance matrix and a ...
متن کاملScatter Matrices and Independent Component Analysis
In the independent component analysis (ICA) it is assumed that the components of the multivariate independent and identically distributed observations are linear transformations of latent independent components. The problem then is to find the (linear) transformation which transforms the observations back to independent components. In the paper the ICA is discussed and it is shown that, under s...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملIndependent Subspace Analysis Using Three Scatter Matrices
Abstract: In independent subspace analysis (ISA) one assumes that the components of the observed random vector are linear combinations of the components of a latent random vector with independent subvectors. The problem is then to find an estimate of a transformation matrix to recover the independent subvectors. Regular independent component analysis (ICA) is a special case. In this paper we sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2007
ISSN: 0167-9473
DOI: 10.1016/j.csda.2006.07.010